Trends in Cancer

Matthew Lunning D.O., FACP Associate Professor Division of Hematology/Oncology Associate Vice Chair of Research DOM Assistant Vice Chancellor for Research

University of Nebraska Medical Center

Session Objectives

1. Discuss the current state of cancer in 2025

2. Describe advancements in cancer treatment and their impact.

3. Evaluate emerging technologies towards personalization in cancer.

4. Introduce lifestyle modification and early detection strategies for cancer risk reduction.

Oncology 2025

2,041,910

ACS 2025

Oncology 2025

Oncology 2025--XX

- Women under 50: Cancer diagnoses rates are now 82% higher than in men of the same age group, up from 51% in 2002.
- Lung Cancer: For the first time, lung cancer diagnoses in women under 65 have outpaced those in men.

Oncology 2025--XX

Women under 50: Cancer diagnoses rates are now 82% higher than in men of the same age group, up from 51% in 2002.

• Lung Cancer: For the first time, lung cancer diagnoses in women under 65 have outpaced those in men.

Oncology in 2025--Specifics

- Oral Cavity/Pharynx Cancers: Largely due to HPV-associated cancers, the incidence rates have increased by 0.7% per year from 2012 to 2021.
- **Pancreatic Cancer**: Rising to the 3rd leading cause of cancer death in the U.S the incidence and mortality rates continue to rise.
- Colorectal Cancer: Increase in incidence among adults under 65, prompting recommendations to lower screening at age 45.

Oncology in 2025--Disparities

2-3 X higher incidence of kidney, liver, stomach, and cervical cancers

Oncology 2025—Getting Better

34%

ACS 2025

Paradigms in Cancer

Cancer Treatment Timeline: Induction, Consolidation, and Maintenance

	Induction	Consolio	lation					
I	I	,	1		I	1		T
0.0	2.5	5.0	7.5	10.0 Weeks	12.5	15.0	17.5	20.0

How We Move the Needle

Generated by ChatGPT

In My Career

- Checkpoint inhibitors
- CAR-T
- Radioimmunotherapy
- ADCs
- Oncolytic viruses

Rapid Advancements

Wu et al. Digestive Diseases & Sciences 2020

Checkpoint Inhibitors in Melanoma: Story of 6's

Knight et al. Cancers 2023

Research in Parallel Checkpoint Inhibitors

Pushing the Research Envelope

Knight et al. Cancers 2023

2018 Nobel Prize in Medicine

CTLA-4

James Allison Ph.D. MSKCC/MDACC

PD-1/PD-1L

Tasuku Honjo M.D. Ph.D. Kyoto University

Large B-cell Lymphoma: Chemo Bombs

Vein to Vein

NCI.gov

LBCL in 2025: CAR-T > Chemo Bombs

No. at Risk

Axi-cel	180 177 17	0 161	. 157	147	136	125	117	116	114	111	108	105	105	100	100	100	100	100	96	80	67	54	41	29	20	14	4	2	1	0
Standard care	179 176 16	3 149	134	121	111	106	101	98	91	89	88	87	87	85	83	81	79	78	73	63	51	41	31	19	14	7	4	1	0	

Barrier to Massive Progress

Personalization of Cancer: 2025

Generated by ChatGPT

Personalization of Cancer in 6 Notes BLOW DRAW

Universal Molecular Testing for All Patients

- Immediate clinical utility lacking
- J Cost and resource constraints
- J Turnaround time delays

Molecular Testing in Select or Refractory Patients

- J Research-driven utility vs. clinical utility
- Selective value in certain subtypes
- A Risk of overinterpretation

N

A Note: Lack of Immediate Clinical Utility

A Note: Lack of Immediate Clinical Utility

N at risk (events)

A+CHP 226 (5) 179 (36) 150 (62) 138 (72) 123 (70) 154 (81) 85 (85) 67 (88) 44 (89) 31 (91) 21 (82) 15 (94) 4 (94) 2 (94) 0 (94) CHCP 226 (5) 159 (65) 138 (94) 116 (100) 101 (112) 94 (115) 79 (117) 70 (118) 55 (119) 39 (118) 24 (121) 6 (125) 0 (125) 0 (125)

A+CHP 226 (2) 206 (14) 193 (27) 184 (33) 173 (42) 192 (49) 156 (52) 152 (54) 143 (57) 117 (61) 103 (63) 80 (66) 48 (68) 23 (66) 5 (66) 0 (66) CHCP 226 (2) 156 (24) 181 (20) 100 (57) 157 (00) 152 (54) 148 (56) 143 (71) 132 (75) 105 (78) 90 (83) 68 (86) 43 (83) 25 (89) 8 (89) 0 (89)

Nat risk (events)

A+CHP 162 (2) 136 (16) 117 (34) 107 (42) 95 (46) 81 (48) 67 (48) 55 (49) 33 (50) 23 (51) 15 (52) 7 (53) 2 (53) 0 (53) 0 (53) CHOP 154 (3) 103 (46) 89 (62) 84 (66) 75 (69) 68 (72) 57 (73) 48 (74) 38 (74) 26 (74) 16 (75) 4 (77) 0 (77) 0 (77) 0 (77)

A+CHP 226 (0) 206 (14) 100 (27) 164 (33) 173 (42) 162 (49) 156 (52) 152 (56) 143 (57) 117 (81) 103 (53) 80 (86) 48 (86) 23 (86) 5 (88) CHCP 226 (0) 196 (24) 181 (39) 160 (57) 157 (00) 152 (54) 148 (58) 143 (71) 122 (75) 105 (78) 90 (83) 68 (86) 43 (80) 25 (89) 8 (88) 0 (88)

N at risk (events)

A+CHP 162 (0) 151 (8)143 (14)137 (18) 131 (24 122 (29) 119 (31) 116 (34) 109 (36) 88 (37) 76 (37) 56 (38) 32 (30) 12 (39) 3 (30) 0 (39) CHCP 154 (0) 127 (22)119 (30) 112 (36) 109 (39) 107 (41) 107 (41) 104 (42) 97 (43) 79 (44) 56 (46) 50 (46) 31 (46) 17 (49) 4 (46) 0 (46)

A Note: Lack of Immediate Clinical Utility

Courtesy of Neha Metha-Shah M.D.

N

Foundation One Heme

- Cost: \$5800-7200
- FDA cleared

TEMPTUS xT

Cost: \$3000-5500
 Not FDA cleared (LTD)

Neogenomics

- Cost: \$2500-4500
- Not FDA cleared (LTD)

- MSKCC IMPACT
 - CLIA, CAP, and FDA cleared
- Stanford Hematologic Malignancy NGS
 CLIA, CAP, but not FDA cleared
- Dana-Farber's HemePACT
 - CLIA, CAP, but not FDA cleared
- MD Anderson Heme-STAM
 - CLIA, CAP, but not FDA cleared

Context

Community oncology clinic

Commercial clinical trial enrollment

Billing with Medicare/private payers

Academic center using institutional testing

Rapid adoption of emerging biomarkers

FDA-Cleared Preferred?

Yes

X CLIA-only may be faster

- •Requires:
- 5–10 unstained slides (4–5 microns thick) OR
- •1 FFPE block (preferred if RNA analysis is planned)

•Must have:

>20% tumor content for accurate mutation calling
 Pathologist-reviewed H&E slide for quality control

E: Note Turnaround Time (TAT) & Delavs

Commercial Platform	Panel Name	Typical TAT	Potential Issues
Foundation Medicine	FoundationOne Heme	~12–14 business days	Includes DNA + RNA; can be delayed by insurance paperwork
Tempus	Tempus xT / xE / xR	~10–14 business days	RNA fusion testing may take longer
NeoGenomics	Lymphoid NGS Panel	7–14 business days	Quicker for DNA-only; FISH or add-ons may extend time
Institution	Panel Name	Typical TAT	Potential Issues
MSKCC	MSK-IMPACT (Heme)	10–21 calendar days	Often faster for internal MSK patients; includes CLIA report
Stanford	Stanford Heme NGS Panel	10–15 business days	Turnaround may be longer if samples are from outside
Dana-Farber / BWH	HemePACT	14–21 business days	Used internally or with DFCI affiliations
MD Anderson	HemeSTAMP	10–14 business days	Faster when run for internal patients

E: Note Turnaround Time (TAT) & Delays

N

B Note: Selective Value in Certain Subtypes

Vose et al. JCO 2008; Ellin et al. Blood 2014

B Note: Selective Value in Certain Subtypes

B Note: Selective Value in Certain Subtypes

Purpose

Identifying TFH phenotype

Prognostication

Target identification

Eligibility for clinical trials

Example

TET2, *DNMT3A*, *RHOA*, *IDH2* combo

TP53, *CDKN2A* alterations = poor risk

 $IDH2 \rightarrow IDH2$ clinical trials

Many trials now require sequencing data

N

*B. mRNA expression of a TFH signature published by Dobay et al, Haematologica, 2017.

Heavican et al. Blood 2019

Huang et al. Cell Rep Med 2024

Clinicaltrials.gov.

* Progression assessment based on local assessment using the Lugano classification

N

F Note: Risk of Overinterpretation

Risk	Description	Example
Clonal hematopoiesis confusion	CHIP mutations misread as tumor	TET2, DNMT3A in elderly patient
Misclassification	Mutation pattern used alone to subtype	RHOA without TFH morphology
A variant of unknown significance misuse	Variants incorrectly considered actionable	Unproven IDH2 variant
Targeted therapy misapplication	Mutation does not equal actionable	STAT3 mutation \rightarrow off- label ruxolitinib
Inappropriate sample	Non-tumor DNA sequenced	Blood sample without tumor involvement
Non-expert interpretation	NGS data misread or misused	Over-reliance on lab report summary

F Note: Risk of Overinterpretation

F Note: Risk of Overinterpretation

Moskowitz et al. Blood 2021

Aways to Go

BLOW

Universal Molecular Testing for All Patients

- Immediate clinical utility lacking
- J Cost and resource constraints
- J Turnaround time delays

Molecular Testing in Select or Refractory Patients

- Research-driven utility vs. clinical utility
- Selective value in certain subtypes
- A Risk of overinterpretation

Lifestyle Modification for Cancer Risk Reduction

Generated by ChatGPT

Cancer Prevention: Lifestyle Factors

Lifestyle Factor	Associated Cancer(s)	Approximate OR Range
Smoking	Lung, bladder, esophagus, head & neck	10–30+
Alcohol	Liver, oral, esophagus, breast	1.5–5
Obesity	Breast, endometrial, colorectal, kidney	1.2–2.5
UV Exposure	Melanoma, squamous/basal cell skin cancer	2–4
HPV (sexual behavior)	Cervical, anal, oropharyngeal	5–100 (varies by subtype)

What About Vaping....

ACS Facts & Figures; Surgeon General Report 2006; National Academies of Sciences, Engineering, and Medicine (2018)

Definition of "a Drink"

NIAAA 2024

Risk of Alcohol & Cancer

The "How" of Alcohol

MECHANISM A

Alcohol breaks down into acetaldehyde which damages DNA in multiple ways, causing an increased risk of cancer.

MECHANISM B

Alcohol induces oxidative stress, increasing the risk of cancer by damaging DNA, proteins, and cells and increasing inflammation.

Reactive Oxydative oxygen stress species

DNA. proteins, and lipids damage

MECHANISM C

Alcohol alters levels of multiple hormones. including estrogen, which can increase breast

cancer risk.

Alters DNA breast tissue damage

MECHANISM D

Alcohol leads to greater absorption of carcinogens.

Carcinogens cells in mouth dissolve in alcohol and throat

Alcohol alters Carcinogens more easily absorbed

*Rumgay et al. (2021) reviewed these four mechanisms through which alcohol can cause cancer along with several other possible pathways that appear to influence cancer risk. These include disruption of one-carbon metabolism, alteration of retinoid metabolism, and impaired immune function among others.

Rumgay et al. Nutrients 2021

Cancer Prevention: Very Early Detection

Generated by ChatGPT

PATHFINDER Study

Schrag et al. Lancet 2023

Liquid Biopsy→Biopsy

Marginal-zone lymphoma stage I Diffuse large B-cell lymphoma stage III Mature B-cell neoplasm stage IV Diffuse large B-cell lymphoma stage IV Recurrent local cancer, no pathology

Waldenstrom macroglobulinaemia (n=2 Waldenstrom macroglobulinaemia Waldenstrom macroglobulinaemia

Chronic B-cell lymphocytic leukaemia Chronic B-cell lymphocytic leukaemia

 USPSTF screening No USPSTF screening

Oropharyngeal cancer (n=2) Squamous cell carcinoma stage II Squamous cell carcinoma stage IV

> Lung (n=1) -Adenocarcinoma stage III

> > Breast (n=5)

Carcinoma consistent with breast primary RM Carcinoma consistent with breast primary RM

> Liver (n=1) No pathology stage I

Intrahepatic bile ducts (n=1) Adenocarcinoma stage III

> Pancreas (n=1) Adenocarcinoma stage II

Small intestine (n=1) Adenocarcinoma stage I

Colon and rectum (n=2) Adenocarcinoma stage IV

Uterus (n=1) Endometrial adenocarcinoma stage I

Ovary (n=1) Serous adenocarcinoma stage III

Prostate (n=2) -Adenocarcinoma stage IV Biochemical recurrence, no pathology

> Bone (n=1) Spindle-cell neoplasm stage II

Schrag et al. Lancet 2023

Practical...

	Age ≥50 years with additional cancer risk (n=3681)	Age ≥50 years without additional cancer risk (n=2940)	Total (n=6621)
Resolution			
All	56 (1.5%)	36 (1.2%)	92 (1.4%)
True positive	24 (0.7%)	11 (0.4%)	35 (0.5%)
False positive	32 (0.9%)	25 (0.9%)	57 (0.9%)
Positive predictive value	24/56; 43% (30.8-55.9)	11/36; 31% (18.0-46.9)	35/92; 38% (28.8-48.3)
Negative predictive value	3449/3502; 98.5% (98.0-98.8)	2786/2819; 98.8% (98.4-99.2)	6235/6321; 98.6% (98.3-98.9)
Specificity	3449/3480; 99.1% (98.7-99.4)	2786/2810; 99.1% (98.7-99.4)	6235/6290; 99.1% (98.9-99.3)
Yield rate	24/3681; 0.65% (0.41-0.92)	11/2940; 0.37% (0.17-0.61)	35/6621; 0.53% (0.36-0.71)
Number needed to screen	3681/24; 153 (108-245)	2940/11; 267 (163-588)	6621/35; 189 (141-276)
Predicted origin accuracy*			
First CSO correct	20/23; 87% (67.9-95.5)	9/11; 82% (52·3-94·9)	29/34; 85% (69·9-93·6)
First or second CSO correct	23/23; 100% (85.7–100)	10/11; 91% (62·3-99·5)	33/34; 97% (85·1-99·8)

Data are n (%), n/N, or % (95% CI). CSO=cancer signal origin. *Excludes one participant with indeterminate CSO from the true-positive set.

Future Directions

- Cancer vaccines
- Microbiome and immunomodulation
- Health equity and access to innovation

Summary

- Cancer treatment is rapidly evolving
- Personalized medicine is improving outcomes
- Prevention remains vital and very early detection remain continues to evolve

